sábado, 8 de novembro de 2025

Network Robustness

Using the giant-component breakdown criterion, k2fkf=2\frac{\langle k'^2 \rangle_f}{\langle k' \rangle_f} = 2, and replacing ff by fcf_c in the expressions for the residual moments, derive the relation that expresses the second moment of the original degree distribution, k2\langle k^2 \rangle, in terms of the original first moment, k\langle k \rangle, and the critical percolation threshold fcf_c.

The derived relation is:

a) k2=k(1+11fc)\langle k^2 \rangle = \langle k \rangle \left( 1 + \frac{1}{1 - f_c} \right)
b) k2=k2fc1fc\langle k^2 \rangle = \langle k \rangle \frac{2 - f_c}{1 - f_c}
c) k2=2k(1fc)+kfc\langle k^2 \rangle = 2 \langle k \rangle (1 - f_c) + \langle k \rangle f_c
d) k2=k(1fc)2\langle k^2 \rangle = \frac{\langle k \rangle}{(1 - f_c)^2}
e) None of the above

Original idea by: Matteus Vargas Simão da Silva

Um comentário:

  1. Interesting question, but I don't see the purpose of having this expression. I like when the questions add something meaningful to one's knowledge.

    ResponderExcluir

Network Robustness

Using the giant-component breakdown criterion, ⟨ k ′ 2 ⟩ f ⟨ k ′ ⟩ f = 2 \frac{\langle k'^2 \rangle_f}{\langle k' \rangle_f} = 2 , a...