sexta-feira, 5 de setembro de 2025

Random Networks

You were hired to audit a router backbone. The team claims the topology is well modeled by an Erdős–Rényi network G(N,p)G(N,p) with N=106N=10^6 and mean degree k=6\langle k\rangle=6. Based only on this model, choose the option that simultaneously describes:

(i) the structural regime and the expected global connectivity;
(ii) the clustering coefficient CC;
(iii) the order of magnitude of the average distance d\langle d\rangle; and
(iv) the minimum fraction qcq_c of random node removals needed to eliminate the giant component.

Conventions: “connected” = a single component; ln\ln is the natural logarithm; round d\langle d\rangle to the hundredth and qcq_c to three decimals.

Useful data:
ln102.3026\ln 10 \approx 2.3026, ln61.7918\ln 6 \approx 1.7918, ln106=6ln1013.8155\ln 10^6 = 6\ln 10 \approx 13.8155.

a) Supercritical, with a giant component (network not necessarily connected); Cp6.0×106C\approx p\approx 6.0\times10^{-6}; dlnNlnk7.71\langle d\rangle \approx \dfrac{\ln N}{\ln\langle k\rangle}\approx 7.71; qc11k0.833q_c\approx 1-\dfrac{1}{\langle k\rangle}\approx 0.833.

b) Connected with high probability; C6.0×103C\approx 6.0\times10^{-3}; dlnN13.82\langle d\rangle\approx \ln N\approx 13.82; qc0.500q_c\approx 0.500.

c) Subcritical, no giant component; C6.0×106C\approx 6.0\times10^{-6}; dlnNln67.71\langle d\rangle\approx \dfrac{\ln N}{\ln 6}\approx 7.71; qc0.833q_c\approx 0.833.

d) Critical; Cp6.0×106C\approx p\approx 6.0\times10^{-6}; d\langle d\rangle grows as N1/3N^{1/3}; qc1.000q_c\approx 1.000.

e) None of the above.


Original idea by: Matteus Vargas

Um comentário:

  1. Questão interessante, mas muito cheia de coisas, e tem assuntos que não abordamos, como a fração de remoções necessária para desconectar. Ficou um pouco difícil demais.

    ResponderExcluir

Scale-Free Networks A network is defined as scale-free if the probability P ( k ) P(k) of a node having k k links (degree) follows a po...